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Abstvict

The Generalized Lambda Distribution (GLD) is a four parameter function that is capable of

mimicking the behavior of a wide range of probability density functions (pdfs). Unfortunately, the

GLD presently cannot model every possible type of pdf. Since tile reasons for this limnitation are

unknown, this thesis examines several potential problems in an attempt to expand the range of

distributions the GLD call mimic.

We first present a discussion of the behavior of the algorithm (known as Powell's Algorithm)

that is used to search for the appropriate GLD parameter values. In particular, we examine the

effect of using this unconstrained search procedure to find the parameters subject to a constraint

that ensures that the resulting pdf is valid. We also develop a reparameterization'of the GLD that

creates an unconstrained search region. This does not expand the range of distributions the GLD

* Ican mimic.

We then use an extensive numerical investigation to examine the set of distributions that

can be obtained from combinations of the GLD parameters. This examination allows us to expand

the range of pdfs that can be modeled using the GLI). We also inspect some pdfs that cannot br

modeled using the GLD, as well as present an alternative to the method of moments for determining

the parameter values, using the recently-developed concept of L-moments.

S /
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AN ANALYSIS OF TIlE

GENERALIZED LAMBI)A DISTRIBUTION

L Intrioduction

Today's military is faced with a two-fold problem. Because of the end of the Cold War and

its resulting budgetary reductions, it must reduce its manpower in all career fields. In addition,

since there is no longer a clearly-defined "enemy," it, must also be prepared to deal with a myriad

of potential conflicts and crises. For example, the military support for Operation Restore Hlope, the

1992-93 relief efforts in Somalia, had to be thoroughly planned and organized. Military planners

were faced with the monumental task of orchestrating the movement of over 28,000 Marine and

Army troops, as well as providing for their logistical support in a country that had no established

government, infrastructure or means of feeding its own people.

Because of budget cuts, the planning involved in dealing with such situations must be accom-

plished by a smaller staff, in the same amount of time as before. Planners are forced to do more

with less and must therefore work more efficiently. Any cost- or time-cutting measures that are

available must be implemented.

One such measure is the use of computer-aided simulations. As a result of the rapid improve-

ment in the capabilities of small computer systems, computer simulations that model changing,

complex, or unique situations have become more practical and easier to implement. Planning for

contingencies such as Operation Restore Hope can be done in a fraction of the time, and the soft-

ware used to analyze one scenario can be saved to model any other similar world situation that

may arise in the future.

Simulation is useful in many military situations. It can be used to assess potential casualty

rates and mission timetables for large-scale military operations, such as Desert Storm, the 1992



Gulf \V,.r. It can also be used to examine situations tha' are difficult to model in the real world,,

such as the ,xpected damage resulting from an ICBM strike.

The problem with simulation, however, is that. many applications requirc one to develop

probabilistic models of various input variables, usually based on real-world data. For these siniu-

lations, information such aws the lifetime of a certain part, the number of troops needed to secure

an airport, or the radiation pattern from a nuclear explosion is crucial in order to get results that

"mean something." However, such information is rarely known with certainty. I nstead, planners

usually have a bank of accumulated data from previous tests arid expleriences which they can use

to probabilistically describe the range of possible values for each of their variables of interest.

The probabilistic description of a continuous random variable is usually summarized by its

probability density function (pdf). Many different pdfs, including those for such wel-known ,1is-

tributions as the Normal, Exponential, and Weibull, are available to the modeler. Each pdf has

its own distinct shape (or shaoes) and covers a specific range of values. Since most of these pdfs

are available in commercial simulation packages, the modeler must decide which of the various

:tistributions that are available best "fits," or describes, his set of data.

An alternative to this decision is to use a distribution with a more generalized density function

that is not limited to a small number of particular shapes, but can instead take on a wide variety

of different ones. The use of such a generalized function frees the modeler from having to decide

between two competing distributions and allows hin, the leeway to create an even better fit to the

data.

The Generalized Lambda Distribution (GLD) has just such a density function. It was origi-

nally created by Ramberg and Schmeiser [12] for the purpose of efficiently r odeling and generating

random variables for use in simulation studies. The GLD is comprised of four parameters, Al, A2 ,

A3 , and A4, that act together to allow adjustment of the location, scale, and shape of the density

function so that it is able to model different random variables. In order to fit the GLD to an

2



actual set of data, we nieed to determjine appropria,,e %aluies for the four paramteters. TI'ls is usu-

ally accomiplished by first, computing the first four sample mioments (the ,inean, va;rianc~e, slivwiess,

andI kurtosis) of the data. We then use a cormputerizedI search routhie to find the appropriate

combination of parameter values so that the rcsidting form of the GLI) will have those samie four

Because of its ability to "match moments," we can use the GLD! to mimic the behavior

of most of the commnonly-used pdfs simply by setting the foi~r parameters to appropriaite values.

Figure I shows the ranges cf these pd~s in terms of their mecasures of skewness anl(l kurtosis. Sonie

0 1- 2 34
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Figure 1. Characterization of Various Distributions by Their Skewness and Kurtosis

distributions, such as the Uniform, Normal and Exponential, are represented by single points;

others, such as the Student's t, Log-Normal and Gamma, are represented by curv--s; the three types
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of beta distributions are represented by regions of values. 'The top right-hand region, denoted the

"Ihpossible Area," contains skewness- kurtosis conmbinations that will never be exhibited b)y any

pdf. The GLI), at present, can "mimic" those pdfs found within the shaded region of Figure 1.

Obviously, all but some of the U-- and J-shaped bela distributions can currendy be modeled using

tthe GLD.

In order to make the GLD a more effective tool, we wish to expand the shaded region of

Figure 1 beyond its current limits-ideally, all the way to the Impossible Area. Unfortunately, the

- .. reasons for the GLD's current limitation are unknown, and one of the objectives of this thesis is to

explore these limitations and develop means to overcome them.

There are three particular questions we can address in pursuit of this objective. One concerns

the behavior of the computerized search routine (known as Powell's Algorithm) used in the moment-

matching process. This algorithm was originally designed for searches over unrestricted regions.

'iowever, in the case of the GLD, two of the parameters, A3 and A4, are required to have the

same sign, thereby limiting the range of possible values. We are uncertain of the behavior of our

particular implementation of Powell's Algorithm as it encounters this restricted area. In order to get

a better understanding of this problem, we will perform an examination of the algorithm's behavior

as it approaches and attempts to cross the constraining boundaries. We will also examine some

techniques for elimtinating the problem altogether. These efforts should help us determine whether

the observed limita ion on the GLD occurs as the result of inadequacies in the implementation of

this search algorith

Second, previo s research has shown that a pattern exists in the values of A3 and A4 that pro-

duce certain combina ions of skewness and kurtosis. This pattern suggests the hypothesis that the

minimum possible va uc of kurtosis that the GLD can have-given a specified value of skewness-

occurs when A3 = 0. This implies that the GLD's limitation might be a result of restrictions on

the possible values of its parameters. As a means of assessing the validity of this hypothesis, we

4



will examine the skewness and kurtosis values that result from different combinations of A3 and

A4 . We hope that the insights garnered from this exercise will also enable us to determine if the

limitations on the GLD can be overcome.

Third, we will examine some of the distributions that can not be modeled by the GLD.

Although these cases may be important in mathematical circles, it is conjectured that they may

not have significant practical applications. Further examination will help determine whether this

is true or not.

As discussed previously, the GLD parameter values are traditionally estimated from the first

four moments of the data. However, the higher order sample moments (skewness and kurtosis) are

highly variable and are, therefore, somewhat untrustworthy. Recent research has suggested that a

different approach. Tie use of L-moments could be used to replace these moments with potentially

more-stable measures. Thus, a second objective of this thesis is to develop these measures for the

GLD and revise the computer search routines to utilize this new method as an alternative to the

method of moments.

Figure 1 shows that the GLD can already be used as an effective tool for simulation analyses.

Hopefully this research will provide a deeper insight into the properties and limitations of the GLD.

By corclusively determining the limits of its range, as well as the types of distributions that can not

be duplicated using it, we will attempt to make the GLD an even more powerful tool and further

enhance its value for futilre simulation studies.

5
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II. Background

2.1 OLD Development

Although most of the commonly--used continuous probability distributions are defined in

terms of their density functions, f(x), or cumulative distribution function-: F(x), it is equally valid

to define a distribution by its percentile function, if that percentile function exists. The percentile

function is simply the inverse of the distribution function, i.e., R(p) = I-'(p), or equivalently,

p = F(x). The percentile function, R(p), is used similarly to a distribution's cumulative density

function (cdf), in that it determines the value, x = R(p), such that the probability that a randomn

variable having this distribution takes a value less than I is p.

The abifity to express a random variable in terms of its percentile function is quite useful in

Monte Carlo simulation studies. In particular, it is well known that if R is the percentile function

of a continuous probability distribution and if the random variable U is uniformly distributed on

the (0,1) interval, then the transformation X R(U) yields a continuous random variable with

percentile function R. Thus, since sources of uniform (0,1) pseudo-random variates are commonly

available, this transformation yields a simple method for generating pseudo-random variates from

distributions whose percentile functions are known and are computationally tractable.

Tukey [15] created a function, which he called the lambda function, in this manner. Tukey's .

function, which is valid for all non-zero A, can be written as

Ap _ P)' 0 < p <(1)

Filliben [2] used this function to approximate symmetric distributions with a wide range of

tailweights and noted that when A = 0.14, the lambda function resulted in a "good" approximation

to the standard normal distribution. He further noted that the logistic distribution results as

"6



A 0 while, for A = -1, the resulting function is approximately Cauchy. Filliben also presented a

complete discussion of the density functions that result for various values of A.

Ramberg, et al [13] generalized Equation 1 to a four-parameter distribution that could be

used to approximate a number of well-known symmetric and asymmetric distributions-noting, in

comparison, that a close approximation to the standard normal results when Al = 0, A2 = 0.1975,

and A3 = A4 = 0.1350 [13:203]. Their distribution is defined by the percentile function

R(p)- A + A2 <- (2)

The distribution defined by Equation 2 is referred to as the Generalized Lambda Distribution

(GLD). The GLD has also been referred to as the Ramberg-Schmeiser-Tukey (RST) distribution

in the literature (see, for example, Mykytka [9]). The parameters A1 and A2 are location and scale

parameters, respectively, while A3 and A4 are shape parameters that jointly determine the skewness

and kurtosis of the GLD. When A3 = A4 , the resulting density is symmetric.

Using the fact that x = F-1 (p) = R(p), we can find the density function corresponding to
\

Equation 2 by noting

-dF(x) _ dp _(dR(p) ~-1
dX dR(p) dp

which yields

12

) (dR(p) 1  0 < p < 1. (3)
kdp = A3PA-31+A 4(1-p)A4-1

It shouid be noted that although A, does not appear explicitly in this expression, f(x) is indeed a

function of A, since it is defined in terms of R(p), which does depend on A1 .

The cumulative distribution function of the GLD does not, in general, exist in a simple closed

form, but this should not be a cause of concern since it is also true of the normal distribution,

7



whose percentiles are more difficult to compute. For the GLD, it is simple to obtain plots of the

distribution function by plotting p on the y-axis versus R(p) on the x-axis. Similarly, a plot of

the density function is obtained by plotting fiR(p)] on the y-axis against R(p) on the x-axis, for

p ranging from zero to one. FORTRAN programs that compute R(p) and f[R(p)] for specified

lambda values are given in Mykytka [9:82-84].

2.2 Calculation of GLD Parameters

2.2.1 Statistics Background. The four GLD parameters are linked to the distribution's

first four central moments: the mean (pi), variance (o 2 ), skewness (aA), and kurtosis (N4 ). For

readers unfamiliar with these concepts, this subsection will present a brief overview. A more

thorough explanation of these concepts can be found in most statistics textbooks. The information

given below was taken from Mendenhall, Wackerly and Scheaffer [8].

The first moment about the origin describes the center of a pdf and is commonly referred to

as the mean (I). The variance (a2) is the second moment about the mean of a distribution and

describes the "spread" if its pdf. Unfortunately, the mean and variance do not uiiiquely define a

pdf. Many different distributions can possess the same mean and variance. Therefore, we must

utilize additional measures (such as skewness and kurtosis) to distinguish between different pdfs. -

The reader might remember that for a particular distribution,H te-rean -isde~fi-d as the

expected value of a random variable following that distribution, it = E(X). This is the average

value we would observe if we were to continually take samples from the distribution. For an

empirical data set with n observations, we can estimate u with the sample mean, 7, which is

defined as follows

nX= n~i-,.=
n

X yields the average value of the data set.

8



The variance gives a measure of how wide the distribut ion (or sample data set) is. It is defined

as the expected value of the square of the difference between a sample value and the mean of the

distribution, 2 = E[(X - it 2 ]. For sample data, this can be estimated using the sample variance

&2 = n •
- Xi - TX)2.

i=1

The higher order moments are defined similarly. The standardized third moment about the

mean, the skewness (a 3), gives a measure of how symmetric the distribution is. It is defined as

the scaled expected value of the cube of the difference between a sample value and the mean of

the distribution, 0` = [3, wheie the 03 term in the denominator is a scaling factor used to

make a 3 a dimensionless measure. FoY sample data sets,

Fn -7____ 3_
_i= I -- X,.

n &

If a distribution is symmetric about Its mean (like the Normal distribution, for example), it will

have a skewness of zero.

The standardized fourth moment about the mean, the kurtosis (04), is a measure of the

"tailweight" of the distribution. It C.n be roughly thought of as the number of values that lie in

the tails of a distribution. It is defined as the scaled expected value of the difference between a

sample value and the mean, taken to the fourth power, a 4 = 4 We again use a scaling

factor (a 4) to make a4 a dimensionless measure. For sample data sets, a 4 can be estimated using:

n &r4

A lower value of a4 signifies that the distribution will have "thinner" tails than a distribution that

possesses a larger value of a 4.

9
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As mentioned previously, many different distributions can share the same mean and variance.

Fortunately, a distribution's measures of skewness and kurtosis are fairly unique, and therefore can

be used to distinguish it from other pdfs, as we saw in Figure 1. Although we can only uniquely

define a distribution using an infinite number of its moments, we will find that, in practice, using

just these first four moments will be sufficient for most purposes.

These four moments will be used to determine values for the four parameters of the GLD. By

setting the four A parameters to appropriate values, we will be able to duplicate many combinations

of mean, variance, skewness, and kurtosis.

2.2.2 Parameter Definitions. Ramberg and Schmeiser [12] showed that for A1  0, the

k04 moment of the GLD, when *4 exists, is given by

k k

E(Xk) A-k E ( (-l)13(A3 (k - i) + 1, A4 i + 1) (4)
i=O

where the beta function is defined (as in [1:332]) by

r/x(r~y)Sy) r= + y)

Since the beta function is undefined whenever either of its arguments are negative, we must assure

both:

A3(k - i) + 1 > 0

and

A4 i+ 1 > 0,

10



for all i < k. Therefore, the kth moment does not exist whenever

1
min(A3, A4 ) < (5)

REGION I 4

3
x4,) REGION 3 (X 3,k4 > 0)

No positive
monmnts
exist

all positive moments
exist

non-valid
densities

-! -1/2 .1/4
3

first four moments exist
-1/4

! -, mean and variance exist

.............. -I12

first moment non-valid
exists densities

No positive imeger RGO 2
moments exist 3>

4 <-1)

REGION 4 (X 3 ,X4 > 0) No positive
moments
exist

Figure 2. Regions of GLD in A3-,4 Space

The mathematical definition of the GLD that has been given does not ensure that it always

defines a legitimate probability distribution. A valid pdf must exhibit the following behavior:

A(x) > 0, Vx

f_ (z) x = 1.

/
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Schmeiser [14] determined that there are four regions for which the GLID exhibits such behavior.

These regions are depicted in A3 -A 4 space in Figure 2, and have been arbitrarily numbered 1, 2,

3, and 4. It can be shown that no positive moments exist in Regions I or 2 (see, for example,

[6:183-193]). Likewise, from equation 5, we can see that the first four moments exist in Region .4

only when both A•3 and A4 are greater than'-¼. All positive moments exist in Region 3.

Using Equation 4, Ramberg and Schmeiser developed the following expressions for the mean,

variance, skewness, and kurtosis of the GLD:

A
P = •(, A2, A3 , A4)= A + - (6)

a = u'(,\ 2,,A3,,\ 4 ) - 2  (7)
A.)2

C - 3AB + 2A 3

a3 = 
3 (A3 ,• 4 ) =sign(A2). (B A2)] (8)

ON = 4
4 (A\3, A4) = D-4AC+6A

2B- 3A 4

-(B - A2)2

where A, B, C, and D are the following functions of A3 and A4 :

A = (10)
I+ 1• 1 + A4

B I 1 2( + A3 , 1 + A4 ) + 1 2A4

,C 3  #( + 2A3, I + A4) l 3,8(1 + A3,I + 2(4) - (12)

1 + 3A3 1+3A41(

12



D

+ +43 4" (1 + 3A3,1 + 4 ) + 60(1 + 2A3 , 1 + 2A4)

-41(l + A3, I + 34) + - (13)
I+ 4A4

and sign(A2) will be either 1 or -1, depending on whether the )2 parameter is positive or negative.

As the notation indicates, the skewness and kurtosis are functions of A3 and A4 alone. The

skewness, a3, is a function of unly A3 and A4 since, in Regions 3 and 4, the sign of A2 is always

the same as the sign of both A3 and A4 [9:20]. The variance, however, also depends on the shape

parameter A2 and the mean depends on all four parameters. The shaded region of Figure [shows

the different combinations of skewness and kurtosis that can be obtained from the GLD.

2.2.3 Techniques for Determining Parameter Values. The technique known as the method

of moments is the usual means of selecting the values of the GLD parameters. By choosing the

four parameter values appropriately, a wide range of distributions can be duplicated, as indicated

by the shaded portion of Figure 1. We choose the parameter values as follows: /
tI,

1. Since the equations for the skewness and kurtosis, Equations 8 and 9, are functions of only
A3 and A4 , we first determine the values of A3 and A4 that "match" the desired combinaition
of a3 and a 4.

2. Since we now have values for A3 and A4 , we use Equation 7 to find a value for A2 so that the
GLD has the desired variance.

3. Equation 6 is then used to find a value for A, so that we achieve the •esired mean as well.

Table 1. Parameter Determination Using the Method of Mtments

If the values fory,, o2 , a 3 , and 0a4 are unknown, they must be estimated rom the sample data.

The procedure outlined above can then used to determine the four lambda p rameters, replacing

P, 62, a 3 , and a4 with the sample statistics ;, u 2, d3, and 64.

It should be noted that the third and fourth sample moments, d 3, and d 4 are quite sensitive

to extreme observations (values of Xi located more than two standard deviations from X') and the

13
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,variability of these sample moments can be quite large. This can, in turn, result in a poor, or even

incorrect, GLD fit. As a way of reducing this variability, Hlosking [3] present~s an alternative to the

use of sample moments, that of b-moments. hlis L-nionints are computed as linear combinations

of order statistics. When properly defined, theselV moments can be used in place of the traditional

sample moments. Ilie has shown that L-moments produce a more powerful good ness-of-fi t test of

Normality than do traditional moments [4]. We will consider the use of L-moments in selecting

the parameters of the OLD in Chapter VII.

Ramnberg et al [13:210-214] provide a table of the four GLI) parameter values for various

combinations of skewness and kurtosis. These tables only cover distributions with zero mean and

unit varian~ce, but the transformations

a1(~
2) = I0l0,I

_A 2(O,I1)A2(P,a'2) =

can easily be computed for cases when p 96 0 and/or r2 ~1

The calculations for finding the values Of A3 and A4 via the metho of moments, given specified

*values Of a3 and C94 , are complicated. Several different techniques have een implemented. Mykytka

* and Ramberg [101 and Mykytka [9] use non-linear programming me hods to find the minimum

*possible sum-of-squared errors between the calculated and desired values Of a3 and a4:

Min f(\3, A4) =(a3(A3 , A4 ) .a3) + (014 0 3 ,A4 )...a 4)' (14)

subject to A3 - A4 >0. (15)

Equation 15 insures that A3 and A4 lie in either Region 3 or Region 4. The minimization expresed

in Equation 14 is performed using Powell's Algorithm for non-linear function minimization.
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The tables of Ramberg et al were originally developed by specifying desired values for a3

and 0 4 , then finding the appropriate values of Aa and A4 using a FORTRAN program to solve the

minimization problem described in Equation 14. These tables contain values of the four lambda

parameters for values of a 3 between zero and two (in increments of 0.1) and values of a 4 in

increments of 0.2. For a given value of a 3 , the values for a 4 tabled are the smallest valucs for'

which the optimal value of the objective function, Equation 14, was approximately zero. Thus, for

a given value of 0 3 , the table does not necessarily show the minimum possiblt value of a 4 that is

theoretically possible, but only that for which an objective function value near zero was obtained.

Mykytka and Ramberg [101 provide a user-friendly FORTRAN program that will calculate

the four GLD parameter values for combinations of skewness and kurtosis not given in the tables

of [13]. In addition, Itsu [5] has created a C++ program which calculates the four GLD parameters

for a given data set and then allows the user to visually "improve" the resulting fit to the data by

altering the value of one or more of the parameters.

J7
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III. Thesis Objectives

In order for the GLD to be an effective probability distribution, useful for modeling a wide

variety of random variables, we desire that it to be able to "mimic" any possible combination of

skewness and kurtosis. At present, it cannot do so. Mykytka [91 showed a tentative boundary

(reproduced here in Figure 1) for the range of 0 3-a4'comhinations that can be produced using the

GLD. This boundary is based on his tabulated results, which are also found in Ramberg et al [13].

However, as mentioned previously, these tabulated results only show combinations of 03 and 04

for which the numerical search procedure produced a s,.ution with a near-zero objective function.

Therefore, we are not assured that additional combiiiations do not exist above this boundary.

We wish to take steps to either confirm Mykytka's boundary or to expand the GLD's coverage

region. However, due to the complexity of the procedures used to find the A3 and A4. values that

correspond to a specified skewness-kurtosis combination, there are several potential problems that

could be limiting the range of distributions the GLD can mimic. Each of these problems will be

discussed in detail in the following chapters, along with possible methods for their elimination. We

may discover that none of these problems affect the GLD's coverage region. If that is indeed the

case, the efforts outlined in this thesis will not be in vain. By thoroughly examining these concerns,

we will firmly establish the limitations of the GLD, which will be of value to future researchers.

In Chapter IV, we present an in-depth analysis of the particular implementation of Powell's

Algorithm used by Mykytka and Ramberg [10]. The algorithm was originally designed to search

over an unconstrained region, so we will concentrate on its behavior as it approaches the constraints

defined by Equation 15. We then examine the effects of the penalty function that is currently used

to enforce these boundaries. Finally, we describe possible remedies to the problems involved with

using Powell's Algorithm. We analyze one possible solution in particular: a reparameterization of

the GLD parameters in order to create an unconstrained search region.
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In Chapter V, we present an analysis of some -possible limitations of the 3,I). Inste'ad of

determining the values of A3 and A.4 that correspond to a particular (3-a 4 combination, we inst,,ad

look at the values of (1a and a.4 that result from different combinations of A:\ and A.4 BY exaMiniiig

a wide range of A3-A4 combinations, we may be able to gain somic insight about and expand the

limits on the GLD's range.

Chapter VI examines some of the distributions t1 .. , are not presently covered by the GLD.

By examining these pdfs, ..e will get a better grasp for the types of distributions we can not yet

model.

As mentioned previously, the variability of the higher-order sample moments can be quite

large, especially in small data sets. Because of this potential problem, Chapter VII describes L-

moments, an alternative to the use of the traditional sample moments. It provides a summary of

the GLD's four L-moment equations, as well as some suggestions for measuring L-moments from a

empirical data set.

Finally, Chapter VIII summarizes the results of this research and suggests some possible paths

for follow-on efforts.
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IV. Analysis of Powrlls Algorithm

4.1 Background

The search procedure used by Mykytka and R-amberg [101 to determine the optimal values

for A3 and A4 makes use of Powell's Algorithm. This algorithm was originally designed for uncon-

strained non-linear function minimization. However, the GLI)'is constrained by the requirement.

that A3 and A4 have the same sign:

A3 A4 > 0.

As previously mentioned, our objective is to minimize the sum-of-squared errors between the

desired and calculated values of 03 and a 4 subject to this constraint (see Equations 14 and 15).

In the current implementation, "unacceptable" values-those combinations that do not satisfy

Equation 15-are eliminated from consideration by replacing their sum-of-squared errors with a

large penalty. We enforce this penalty by defining the objective function as

min Z =f(A 3 , A4)

where

Z = [(Cs 3(A3, A,) - C13)2 + (V4((A 3, A4,) - a04)2 ]; A3 .A,3 > 0

Z=10; A3 .A4 <0.

Since an appropriate "match" to the desired asV and 0 4 values is produced only when the optimal

value of the objective is zero (practically interpreted as having an objective function value less than

some arbitrarily small value1 ), we can avoid "unacceptable" combinations of A3 and A, by utilizing

this penalty.

1 For example, the FORTRAN code presented in Mykytka and Ramberg [10] will warn the user of an unacceptable
match when the final value calculated for Z exceeds 0.0002.
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Unfortunately, we do not know how Powell's Algorithin acts when faced with this constraint,

i.e., does the inclusion of the penalty force the search into inappropriate directions? Our concern

is that the penalty might possibly cause the search algorithm to exhibit undesired or detrimental

behavior, which might limit, the range of potential 03-04. combinations for which we can find

solutions.

As noted earlier, the only valid combinations of A3 and A4 lie in Regions 3 and 4-regions

that are mutually exclusive2 (see Figure 2). What happens if our initial estimates of A3 and A4

are in Region 3 when the actual result lies in Region 4? As Powell's Algorithm proceeds towards

(0,0) in the A3-. 4 space, it could be faced with the problem of facing a restricted region in each
/

potential direction of travel. What happens in this case? Can we be certain that the algcrithr

moves in the proper direction?

Some preliminary answers already exist. When using the FORTRAN program given by

Mykytka and Ramberg [10], the user must input an initial "guess" at the values for A3 and A4 .

Since A3 and A4 must have the same sign, their initial values must be either both positive or L'Ah

negative. It can be shown that even if the initial guess is in the wrong region (for example, an

initial guess in Region 4 could be provided when the optimal solution actually lies in Region 3) the

algorithm will sometimes switch regions to find the optimal solution. On the other hand, due to

the nature of the algorithm's .earch technique (which will be discussed in detail in Section 4.3), the

possibility of jumping like this directly.from one acceptable region directly to the other is slight. ...

That is, although the algorithm sometimes does switch regions, it usually does not. If, in practice,

we do not achieve a satisfactory Z-value when starting in one region, we need simply apply the

algorithm a second time, changing our starting point to one in the opposite region and hopefully

producing a solution with a better objective function value.

2 The point A3=A4 = 0, although common to both regions, does not yield a valid GLD pdf.
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This behavior suggests that we could see some momentary attempts by the algorithm to

find potential solutions in the "forbidden zone" (i.e. combinations Of A3 and A4 that lie outside

of Regions 3 and 4 in Figure 2) as the algorithm attempts to cross from one region to the other.

What affect might this have on the search algorithm?

The more important cases for this concern are those where the optimal A3-A4 solutions lie

very close to one of the "forbidden zone" boundaries. If we assume that our initial guess lies in

the proper region, we can reasonably expect that the magnitude of Z will be decreasing as Powell's

Algorithm approaches it~s optimal solution (minimum Z-value). As the algorithm nears this optimal

point, its search might reach into the "forbidden zone." The a!gorithmi is suddenly faced with a

"large" increase in the Z-value (namely, Z = 10) in that particular direction. Does this bias the

search in any way? Such a problem might cause the search to proceed in an inappropriate direction

or prevent it from converging to a solution that lies near the constraining boundaries. As a result,

the algorithm might fail to converge to a solution with a non-zero objective function value and the

particular a 3 -a 4 combination would be considered to be infeasible, even though a valid solution

does indeed exist.

4.2 Met hodology~

To investigate this problem, we will examine the behavior of the algorithm, step-by-step,

as it proceeds near-or attempts to cross-the limiting boundaries. This will be accomplished

by altering the FORTRAN code of Mykytka and Ramberg [10] to print each of the intermediate

points in a particular search. By examining the intermediate steps generated by the algorithm as

it proceeds to its final solution, we can get a more complete understanding of its behavior and a

fuller confidence in its results.

We will also inspect the behavior of the algorithm when we provide a starting value in the

"opposite" region. We know there are some cases where the algorithm does cross from one region
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to the other in searching for its optimal value. By comparing the results of these searches to those

when starting points in the proper region are used, we will get an insight into the behavior of the

algorithm as it attempts to search for a solution in, or in the direction of, the "forbidden zone."

In Section 4.4, we will examine cases where the cptimal A3 and A4~ solutions lie close to the

constraining boundaries. By examining the results of searches performed with and without the

penalty function, we will be able to evaluate the effect of the penalty function on the algorithm.

We will use the tabulated values of Ramberg et al [13:210-214] as a source of test values for

this effort. In particular, we will be examining values near (or past) the point where their particular

implementation of Powell's Algorithm failed to converge. Although we will use the FORTRAN code

presented in Mykytka and Ramberg [10] instead of the code used to generate the tables in [13], the

two versions are nearly identical and extensive experience with the code suggests that we can be

confident that they will yield identical results.

4.3 Unconstrained Behavior of the Algorithm

As a starting point, we examine the search techniques used in Powell's Algorithm. By studying

how the algorithm usually performs searches in an unconstrained space, we will hopefully be able

predict its behavior when it is presented with limiting boundaries. We will use Powell's original

paper, [11], as well as the FORTRAN code of Kuester and Mize [7], as references for this analysis.

Powell uses a variation of the method of minimizing a function of several variables by changing

only one parameter at a time. His method uses conjugate search directions at each iteration, which

results in a "fast" rate of convergence.

Each iteration of the algorithm consists of linear searches down n independent directions,

41, 6,. G ,, where n is the number of variables for which we desire values. We start from the best

approximation of the minimum, po. Initially, the search directions are chosen to be in the direction

of the coordinate axes and po is simply our initial "guess" of the point that yields the optimal
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objective function value. Each iteration defines a new search direction, • and, if a test is passed,

this new direction replaces one of the original search directions. A description of an iteration of

the algorithm is given in Table 2.

1. For r = 1,2,..., n calculate vr so that f(Pr-1 + v£rýr) is a minimum and define pr = Pr-i +

2. Find the integer, m, 1 < rn < n, so that [f(pm-i) - fpm)] is a maximum, and define
= /(Pm-I) - f(pn).

3. Calculate. 3f = f(2p. - P0), and define fi = f(po) and f2 = f(pn).

4. If either f3 > f, and/or (f, - 2f.• + f'3) (f, - f2 - 4)2 > IA(f, _ f3) 2, use the old directions,
6 , ,.,,- for the next iteration and use p, as the next po, otherwise,

5. Defining = (p,, - p0), calculate v so that f(PN + Vz) is a minimum. Use
,•,. . .,- , ,, ,, as the directions and pn + vi as the starting point for the

next iteration.

Table 2. Iteration Procedure for Powell's Algorithm

The process -outlined above is a modification to his original method, requiring a larger num-

ber of iterations, but in [11], Powell states that is a valuable, and in some instances, essential

modification. The criterion for convergence is given in Table 3 (taken from Powell [11:158]).

1. Apply the normal procedure until an iteration causes the change in each variable to be less
that one-tenth of the required accuracy, denote the relevant point as a.

2. Increase every variable by ten times the required accuracy.

3. Apply the normal procedure until an iteration causes the change in every variable to be less
than one-tenth of the required accuracy again. Denote the resultant point as b.

4. Find the point at which the function is minimized over the line through a and b, denote this
point as c.

5. Assume ultimate convergence if the components of (a - c) and (b - c) are all less than
one-tenth the required accuracy in the corresponding variables, otherwise

6. Include the direction (a - c) in place of 41, and restart the procedure from Step 1.

Table 3. Criterion for Convergence of Powell's Algorithm

In the FORTRAN code of Kuester and Mize [7] (which is the same code used by Mykytka [9]

and Mykytka and Ramberg [10]), the linear searches are performed using quadratic approximation

techniques (see Chapter 7 of [7]). The function is evaluated at three different points: f(p), f(p+qý),

and either f(p+2q4) or f(p-qf), depending on whether f(p) is less than or greater than f(p+qý).

22

.4

-: " - ". '.... - ." v " , /7*-

7 .* . .



The term q represents the length of the step along the line, and p represents the current point in

the search process. These three points are used to determine whether the function is at a local

minimum. If it is not, the three points are used to generate the "turning value," which is calculated

using a quadratic function of the points and their respective function values. The "turning value".

determines in which direction the search will continue.

In our particular case, we should not expect the algorithm to venture into the "forbidden

zone." If one of the algorithm's quadratic approximation searches attempts to enter this area, the

large value for the penalty function should cause it to reverse course and head in the opposite

direction-back into one of the valid regions. If we only searched in the directions of the coordinate

axes, it would be almost impossible for the algorithm to begin a search in one region and conclude

in the other. However, since the search directions will most likely change as we iterate through the

process, it is possible that the algorithm will "switch" regions, although it appears this behavior

will occur only in cases where Powell's Algorithm can move directly from one valid region to the

other during the course of a single quadratic approximation search.

To test this assumption, we examined several cases where our starting point was in the wrong

region, and the solution algorithm switched to the appropriate region for the optimal result. In all

the cases that were analyzed, some common behaviors were observed. First of all, the algorithm

always switchea regions near the (0,0) point in the A3 -X4 space. Secondly, none of the quadratic

approximation searches termidnated in the forbidden zone. In all cases, one particular quadratic

approximation search had a starting point in the initial region and an ending point in the opposite

region. The algorithm continued its search from this new point and eventually found the optimal

solution.

We present the results of one particular case here as an example. For this analysis, we used

the FORTlRAN code of Mykytka and Ramberg [10] to find the lambda parameters for the following

combination of the first four moments: U 0.0 0ra2  
1-10, Q3 =0.0, a 4 = 6.0. This combination
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is included in the tables of Ramberg et at [13] with the following results: Al 0, A,-= -0.1686,

A3 = -0.0802, A.4 = -0.0802. Obviously, this result lies in Region 4 of Figure 2. Two different

starting points were used. First, we used A3 = A4 = -0.05, which also lies ini Region 4. We then

used A3 = A4 = 0.5, which is in Region 3. The FORTRAN code yielded the tabulated values for

both cases, indicating that, in the 'latter case, the search switched regions.

The particular steps taken in the latter search (A3 =A 4 =0.5) are presented in Figure 3.

The points in Figure 3 represent the termination points of each iteration of Powell's Algorithm,

while the segm ents connecting them represent the path taken from the initial point in Region 3

(top right-band corner) to the optimal point in Region 4 (lower left-hand corner). As can be seen,

the algorithm crosses regions near the (0,0) point, and no iteration termination points lie in the

forbidden zone. Figure 4 shows the termination points of all the quadratic approximation searches

used as the algorithm approached and crossed the boundary. Again, the segments represent the

path taken by the algorithm. As we expect, none of the termination points for the quadratic ap-

proximation searches lie in the forbidden region. The algorithm, therefore, is obviously capable of

jumping directly from one region to the other.

4.4 Constrained Behavior of the Algorithm

Our next concern was with regard to cases where the values for A3 and A4 that minimize

Equation 14 lie within Regions 3 or 4 and close to, or on, one of the limiting boundaries. Our analysis

of the algorithm suggests that it might be possible for the algorithm to "miss" the optimal value.

An example will demonstrate this. Let us assume that an iteration of Powell's Algorithm concludes

at a point near the optimal value (which lies arbitrarily near one of the limiting boundaries), but the

point does not cause the algorithm to meet the termination criteria given in Section 4.3. Another

set of quadratic approximation searches is therefore performed. Let us further assume that the

first such search is correctly in the direction of the optimal point, but also in the direction of the
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"forbidden zone." If the quadratic approxiniation search encounters a candidate solution either

in the "forbidden zone" or~at a point where the value of the function is now much larger than

before, the search process wvill switch directions and search away, from the optimal point. If this

were to happen for several successive iterations, it would seemn possible for the algorithm's searchi

termination criteria to be met at some point other than the optimal solution---- at the "wrong point."

Hopefully the additional searches detailed in Steps 2-5 of Table 3 will prevent this from happening,

but we cannot be sure.

The choice of starting values for A3 and A41 play a role in determining the solution at which

the algorithm will terminate. Because of this, one possible remedy to the potential problem we have

described might be to perform additional searches, using different starting points, as a check. If

these agree, then one might have more confidence that this potential problem was not encountered.

Another solution to this problem would be to decrease the step size, q, used in the quadra-

tic approximation searches. By decreasing the interval between successive search points; we can

reduce the possibility of the above situation occurring, s~nce we hop -fully would be less likely to

"skip aver" the optimal point or step into the "forbidden zone." This is done at a cost, however.

By decreasing the step size, we might increase the number of iteratior~s needed to generate the final

solution, which in turn will require more CPU timt . solve a particular problem.

Despite these possible solutions, we are still not certain as to what effect the current pcnalty

function has on the search procedure. Does its inclusion force the search algorithm into incorrect

directions? How likely is this situation to occur? This is very hard to predict.

As a way of answering these questions, we modified the FORTRAN program of Mykytka and

Ramberg [10] to allow any combination Of A3 and A4 , i.e., Equation 15 is ignored. By doing this,

the algorithm will not be affected by the penalty function, although we must remember that any

combination of Aa and A4 that lies outside of Regions 3 and 4 of Figure 2 corresponds to an invalid

pdf.

26



By comparing the resulting values for the constrained and unconstrained versions, we will

be able to determine. whether the current penalty function adversely affects the algorithm. If the

penalty function is affecting the algorithm, we should see a difference in the final values of A3 and

A4 generated by the two methods. If it has no effect, there should be no difference between the two

methods. We choose to examine a number of points that lie on the limiting boundaries (i.e., either

A3 or A4 equals zero), since these are the cases where the penalty function will be a factor. The

a3-a 4 combinations given in Table 4 were chosen using an adapted version of the FORTRAN code

of Mykytka and Ramberg [10]. This revised version calculates the resulting a 3-a 4 combination

when given specific values of A3 and A4 . A summary of the results is given in Table 4.

Desired Desired CONSTRAINED UNCONSTRAINED
a33 34 A3 A4  Min value A3  \ 4  Min valueF

-0.5656 2.4000' 0.4999 4.873 x 10-" 2.604 lO- 0.5000 -4.237 X 10 -b 3.75 x I0-'
-1.0498 3.6964 0.2500 6.577 x 10- 1.877 X 10 0.2500 -6.049 X 10-1 3.3387 x 10- 1V
0.3636 1.8701 1.5000 1.282 X 10T 2.671 x 10 -U 1.5000 -2.256 x 10-s 8.44 X 10-"4
0.4500 2.2000 4.986 X 10- 0.5812 1 .554 X 10- 4986 7 10-6 0.5812 1.554 X 10-6
0.0000 1.8000 1.751 X 10-7 1.0000 3.223 x 10- 6.591 X 10- 1.0000 3.94 X 10-ý"
1.0498 3.6964 1.576 X 10-6 0.2500 1.093 X 10-9 1.576 × 10-- 0.2500 193i0-
0.1897 1.9009 1.491 X 10-: 0.7999 L7,49 X 1O-iT' 1.491 X 10-i 0.7999 1.749 x TO
-0.1969 1.7961 1.849 x 10-1 1.250 4.647 x 10-l1 1.849 x 10-1 1.250 4.647 x 10-'
"the A3 and A4 values given for the constrained search yielded a4 = 2.4001.

Table 4. Comparison of Unconstrained and Constrained Searches

As Table 4 shows, the search procedure yields almost identical solutions for the two cases. The

columns labelled "Min value" represent the sum-of-squared errors calculated using the displayed

values of A3 and A4. -

An examination of the table shows that along the A3 = 0 boundary (i.e. the last five cases of - .

Table 4), the two searches yield almest identical values for A3 , A4 , and the sum-of-squared errors.

In fact, the results are identical-except in the case where a3 = 0.0 and a4 = 1.8. In this case, the

unconstrained search yields slightly smaller values for A3 and the sum-of-squared errors than the

constrained search does. Even though this is true, the errors are still sufficiently close to zero, and

for all intents and purposei, the two A3 -A 4 combinations are the same. We can therefore conclude
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that the penalty function did not adversely affect the search algorithm for searches along the A3 = 0

boundary.

For all the cases along the A4 = 0 boundary, a smaller final objective function value is

possible using the unconstrained search. The sum-of-sq,iared errors for both the unconstrained

and constrained cases are approximately equal to zero, but the unconstrained A3-A4 combinations

found in Table 4 are in the "forbidden zone" and therefore do not represent valid pdfs. Although

the resulting A3-A,4 combinations from the constrained searches have slightly larger sum-of-squared

errors, they still correspond to valid pdfs. For both cases, the resulting values for A4 are sufficiently

close to zero so that we can safely assume A4 = 0. Since the corresponding A3 values are almost

identical as well, the penalty function, therefore, does not adversely affect the search algorithm

near the A\4 =0 boundary either.

From the cases we have examined, we can see that the use of the current penalty function

does not present a problem. Powell's Algorithm behaved consistently-with or without the penalty

function. Therefore, we are reasonably confident that we can eliminate the penalty function as a

source of error.

4.5 Reparameterizaion

4.5.1 Derivation. Based on the results of the previous sections of this chapter, it appears

that we can reasonably expect Powell's Algorithm to move in the proper fashion when faced with

our constraint. However, we can not forget that Powell's Algorithm was expressly designed for

unconstrained function optimization. We thus can never, be entirely sure that the algorithm will

always behave properly when faced with a constrained search region. It, therefore, may be worth-

while to discuss some techniques to avoid using an unconstrained algorithm in this constrained

space.

2
/

28

X\ .?•



The first, and perhaps simplest method, is to simply ignore the constraint altogether. For

the cases shown in Section 4.4, the values of A3 and -'4 calculated using an unconstrained version

of Powell's Algorithm were almost identical to those found using the constrained search area.

Therefore, we could search with Powell's Algorithm over an unconstrained region, and simply

discard any A3-A 4 combination which lies outside of Regions 3 or 4. On the other hand, how do we

determine appropriate A3 and A4 values for these cases? Should we simply conclude that these cases

are infeasible? The use of a different s.arting point might be an option, since the objective function

is known to be multi-modal. However, if no appropriate values result from these subsequent

searches, we would be forced exclude that particular (k3-a 4 combination from consideration, i.e.,

we would conclude that that skewness-kurtosis combination can not be modeled by the GLD.

A second approach is to eliminate Powell's Algorithm altogether and replace it with a similar

constrained algorithm. This would involve investigating potential replacements, and then imple-

menting a new routine. Since we are uncertain that any other algorithm would perform any better,

this could be a time-consuming, and perhaps unnecessary, process.

A third possibility is to reparameterize the GLD so-that its parameters are incnn-trained.

By doing this, we can eliminate the need for the constraint, Equation 15, thereby changing the

minimization problem to one involving an unconstrained search - a situation for which Powell's -

-... .- Algorithm was expressly designed. This last method seems to hold the most promise for a quick,

easy solution to the problem.

There are several different options for reparameterizing the GLD. One of the easiest is the

following:
0, = ln(A,); =,!=

4 .

Oi= ln(-Ai); Ai = -eel

Ai°

2.9
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when A3 ,•A4 < 0.

By changing the variables in this manner, we create an unconstrained search area. Since

e' > 0 for all x, we are assured that the original parameters, A3 and A4, will always have the same

sign, and we therefore do not need the A3 • A4 > 0 constraint.

It should be noted that this reparameterized version will not be able to switch from one valid

region to the other, as the original sometimes did. This ;s not a big sacrifice, since we know that the

original usually did not switch regions, and therefore could not rely on such behavior. If the new

search algorithm fails to achieve an acceptable solution when given a starting value in one region.

we need simply rerun the FORTRAN program using a starting point in the opposite region.

The reparameterization is accomplished by altering the FORTRAN code used by Mykytka

and Ramberg [10]. The main change involves switching the starting values for A3 and A4 to the

new, reparameterized form. After the initial A values are input by the user, they are calculated inl

0 form before being sent to the FORTRAN subroutine which performs Powell's Algorithm.

The minimization problem therefore becomes:

mi z = f(03,04) = [(a(03, 04) - a3) 2 + (04(03, O4) -a•1) 2],

which would involve recalculating the equations for 03 and N, Equations 8 and 9, using the new

theta parameters- 1 a time-consuming process. *An alternative to this is to perform the Powell's

Algorithm search p ocedure in the unconstrained 0 space, but evaluate the Z-values at each point

in the iteration usin the A values that correspond to the calculated Os. This is easy to accomplish,

since the FORTRA program utilizes a separate subroutine to calculate the values of a3 and

a4 for a given A3-A4 combination. We need simply change the Os back into their respective As

upon entering this su routine to determine the values of a3 and N, We therefore use the new
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theta parameter., only in the subroutine which performs Powell's Algorithm, while the rest of the

program remains more or less the same. -

In order to prove the validity of this technique, the method was checked with a3 - a 4 coin-

binations documented in the tables of Ramberg el al [13]. The new method did achieve the same

values of A3 and A4 , although sometimes two separate searches were necessary in the reparameter-

ized case3 . Since the results of the two methods were identical, we can attempt to expand to values -

beyond the tabulated range.

4.5.2 Results. This expansion was accomplished by first selecting a starting a 3-a 4 coM-

bination from the tables of [13]. By choosing a a 3 -a 4 combination whose A3 and A4 values are

already known, we assure the revised FORTRAN program is working properly and give ourselves V

a basis for comparison between the original and reparameterized versions. After the starting a3

and a 4 values are chosen, we use the reparameterized FORTRAN program to find the appropriate

A3 and A4 parameters. If the values of A3 and A4 yield a sum-of-squared error below our accept-

able tolerance (approximately 0.0001), the value of a 4 is decremented by 0.2 and the FORTRAN

program is run again. When the sum-of-squ?,-ed errors exceeds our tolerance, we chose a different

value of a3 and restart the process.

Several different values of a3 were chosen For the a3-0 4 combinations listed in the tables

of [13], the reparameterized version yielded the same A3-A4 combinations. However, the reparam-

eterized version was not able to expand beyond the tabulated values of Ramberg et al. ,2,

4.6 Conclusions

This chapter has looked extensively at our particular implementation of Powell's Algorithm

auid our current penalty function as sources of possible limitations on the range of a•3a0 4 combi-

nations that can be modeled using the GLD. Section 4.1 examined the inner workings of Powell's

3
This was usually because the initial guess lay in the opposite region as the final result.
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Algorithm to provide a better understanding for how the search procedure is actually performed.

It also discussed the potential problems the penalty function might cause when trying to find A3-A4

solutions located near the limiting boundaries.

Section 4A showed that the penalty function does not adversely affect, the search algorithm

when searching for values located near the boundaries. Table 4 shows that the results between the

constrained and unconstrained searches were consistent along the \3 = 0 boundary, and that only

slight differences existed between the two sets of searches along the A,4 = 0 boundary. Even though

the unconstrained search yielded lower sum -of-squared errors along the A4 = 0 boundary than the

cons!-ained case, the resulting A3-A4 combinations were in the "forbidden zone." The results from

the constrained case along the A,4 = 0 boundary were inside the feasible region, and although the

sum-of-squared errors were slightly larger than the unconstrained case, they were still well below

acceptable tolerances.

Section 4.5 described alternatives to the current situation. In particular, it described the

results of a reparameterization of the A paameters to parameters that are unrestricted in sign.

These unrestricted parameters could not improve the range of a 3-o 4 combinations that can be

modeled using the GLD.

These results, when taken together', show that the present implementation of Powell's Algo-

rithm does not significantly limit the GLD. Even in cases where the final A3 and A4 values lie on

(or near) the limiting boundaries, the algorithm was not affected by the use of a penalty function.

The algorithm also performed just as well in an unconstrained search as it did in the constrained

case. We therefore can safely move on to investigate other issues.
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V. Graphical Analysis of the GiD

5.1 Introduction

/
Mykytka used the tables in [9:87-117]1 to identify the tentative range of a03-a4 combinations

that are possible to model using the GLD [9:22], which is depicted here in Figure 1. lie also presents

a contour map of a3 and a4 values for combinations of A3 and A4 each restricted to the range (0, 1)

We reprint his contour map ([9:39]) here as Figure 5.

The tables used to generate Figures 1 and 5 are not necessarily complete. As we mentioned

in Chapter 11, the smallest value of a4 listed in each table for a given C03 does not necessarily

represent the minimum value'of N4 that is possible for that value of ao using the GLD. It is merely

the smallest value found for which the optimal solution of the objective function, Equation 14,

was approximately zero. It may, therefore, be possible that values of the lambda parameters for

values of 04 smaller than those shown in the table do indeed exist, but for unknown reasons, the

FORTRAN program was unable to find them.

The research outlined in this chapter attempts to extend the boundary presented in Figure 1

using a different approach to the problem. As a result of this effort, we will discover an interesting

simplification to the equations for a3 and N4 that holds under certain conditions.

5.2 Background

An examination of Mykytka's tables [9:87-117] shows that the A3 and A4 values tend to repeat

certain behaviors. A representative table is reprinted here in Table 5. As Table 5 shows, for a given

value of 03, as the value of 04 is decreased (moving from the bottom to the top of a particular

table), the corresponding A3 value starts negative, and increases towards zero. The value of A3 then

takes on a positive value, increases for a while, and then decreases towards zero. The corresponding

IThese tables can also be found in Rarnberg et al [131.
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1A4 values also start as negatives, increase towards zero, and become positive, but then, instead

of decreasing towards zero, the A4 values continue to increase.

Since this behavior is repeated for most of the tables of O3 and 0`4 found in [13], we hypothesize

that, for a given value of a3, the minimum value of a4 possible using tile, GLI) will occur when

\ 3 =0.

Further evidence of this can be seen in Figure 5. This figure shows a subset of the values of

03 and 04 that. result from given combinations of A3-A4. We can see that for a given value of a 3,

the minimum 04 occurs when A3 = 0. On the other hand, Figure 5 only shows a small (although

important) subset of the possible values of A3 and A4 , i.e. those between zero and 1, so we might.

witness different behavior for value of A3 and A4 outside of this range.

As a first step in attempting to prove this hypothesis, we will attempt to expand Figure 5 by

exploring regions outside of the range 0 < A3 , A4 < 1. By extensively examining these regions, we

will hopefully find at least a graphical verification of our assumption.

It should be noted here that as we extend the range of points covered, we will most likely

encounter "less-useful" (or, at least, less intuitively-appealing) pdfs. The shaded region of Figure

1, which signifies the range of 03-a4 combinations that can ýe modeled using the GLD, already /

contains most of the commonly-used pdfs. The only group of pdfs not fully covered are those that

can be represented by the U- and 3-shaped beta distributions. An examination of the GLD's pdf,

Equation 2.1, shows that as A3 is increased above one, the resulting pdf will have a non-zero (i.e.

positive) value at its left endpoint (i.e., f(x) > 0 at the lower limit of the distribution's range).

Similarly, as A4 is increased beyond one, the resulting function will have a non-zero value at its right

endpoint. Since most of the U- and J-shaped beta distributions pdf's exhibit similar behavior, we

suspect that by extending the range beyond 0 < A3 , A4 < 1, we will encounter O3-a4 combinations

characteristic of these distributions.
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A3 = 0.30

14 LAS 1 LAS 2 LAS 3 LAS 4

2.0 -1.550 .2660 .0000 .7020
2.2 -1.16L4 .2755 .0380 .5556
2.4 -. 871 .2733 .0695 .4348 - "
2.6 -. 642 .2586 .0911 .3324
2.8 -. 474 .2323 .0983 .2495
3.0 -. 362 .1991 .0925 .1859
3.2 -. 288 .1641 .0796 .1377
3.4 -. 239 .1298 .0640 .1003
3.6 -. 204 .0973 .0481 .0704
3.8 -. 179 .0671 A0330 .0460

4.0 -. 160 .0389 .0190 .0255
4.2 -. 144 .0127 .6175+ .8035+
4.3 -. 138 .0789+ .0380+ .0489+
4.4 -. 131 -. 0116 -. 5554+ -. 7057+
4.5 -. 129 -. 0231 -. 0110 -. 0139
4.6 -. 121 -. 0343 -. 0163 -. 0203
4.8 -. 113 -. 0554 -. 0260 ".0319
5.0 -. 105 -. 0752 -. 0350 -. 0423
5.2 -. 100 -. 0939 -. 0432 -. 0517
5.4 -. 094 -. 1114 -. 0508 -. 0601 /
5.6 -. 089 -. 1279 -. 0578 -. 0678
5.8 -. 085 -. 1435 -. 0643 -. 0748
6.0 -. 081 -. 1582 -. 0703 -. 0812
6.2 -. 078 -. 1722 -. 0759 -. 0872
6.4 -. 075 -. 1854 -. 0811 -. 0927 "
6.6 -. 072 -. 1979 -. 0860 -. 0977
6.8 -. 069 -. 2100 -. 0906 -. 1025
7.0 -. 067 -. 2214 -. 0949 -. 1069
7.2 -. 065 -. 2325 -. 0990 -. 1111
7.4 -. 063 -. 2427 -. 1028 -. 1149

7.6 -. 061 -. 2528 -. 1064 -. 1186
7.8 -. 060 -. 2623 -. 1098 -. 1220
8.0 -. 058 -. 2716 -. 1131 -. 1253
8.2 -. 056 -. 2805 -. 1162 -. 1284
8.4 -. 055 -. 2889 -. 1191 -. 1313
8.6 -. 054 -. 2971 -. 1219 -. 1341
8.8 -. 053 -. 3050 .1246 -. 1367
9.0 -. 052 -. 3125; -. 1271 -. 1392
9.2 -. 051 -. 3197 -. 1295 -. 1416

Table 5. Sample Table of a3-04 Combinations: Of3 = 0.3, 2.0> a, > 9.2
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5.3 A Simplification of the Equations for o3 and N4

A nice sidelight to our hypothesis is that when A3 = 0, the equations for 03 and 04 (Equations

8 and 9) can be written in a much simpler form. We make use of the fact that

7

I- (1)() i
F(a + 1) a

so that when A3 = 0, the equations for the intermediate parameters A, B,C, and D (given by

Equations 10 through 13) can be reduced to:

1
A = 1-

I+A 4

A4
1 + A4

B I i 2 fl(l,1 +A4) + I+ 2 A4
2A•

(1 -+ A4)(I + 2A4)

1
C = 1- 3(1, 1 + A4 ) + 3,(1, 1 + 2A4)- 1 + 3A4",

6A3

(1 + A4 )(1 + 2A4 )(1 + 3A4 )

D = 1 - 4,(1, 1 +A4) + 6(1, 1 +2A4) - 4(1, 1 +3A4) -- __ :
1 +4A4

24A4
(1 + A4)(I + 2A4)(I + 3A4 )(I + 4A4 )

The formulas for a 3 and a4 become:

2(1 + A4)V1 + 2A4I + 3A
4

37



2(1 + 2A4 )(5 + 3A4 + 4 + 12 4

(1 + 3\ 4)(1 +4A4 )

Note that the equations for a3 and 04 are now functions of a single variable, A4 . Since we have two

equations in a single unknown, we should be able to solve for A,4 when given a specific (3 value. If

our hypothesis is valid, we can then use this value of A4 to find the minimum possible value of 04

for the given value of a3 and we can therefore establish a lcwer limit for the kurtosis.

Because of the symmetry of A• and A4 in the equations for A, B, C, and D, we also found

that, for the case where A4 = 0, the equation for a4 remains the same (with, of course, A3 replacing

A4 ), while that for 013 becomes the negative of the A3 = 0 case, i.e.:

_ - 2(1 + A3)/1 + 2A3
1 + 3A3

2(1 + 2A3)(5 + 3A3 + 16A2 + 12A,)
t4 (+ 3A3)(1 +4A 3 )

5.4 Procedure

A FORTRAN program was written which calculates the Q3-a4 values which correspond to

a specified combination of A3 and A4. The program was adapted from the subroutine in the

FORTRAN code of Mykytka and Ramberg [10] that accomplished the same task. This program

will be a valuable tool for subsequent analysis, since we will be able to restrict our attention to

only valid a3-a4 combinations. Instead of choosing a combination of skewness and kurtosis and

running the original FORTRAN program (as Mykytka [9] did)-hoping the GLD can find a A3-A4

combination to replicate them-we will do something much easier. By setting the values for A3

and A• first, we know that the resulting a3 and N4 values must be within the GLD's range (as long

as only A3-A4 combinations in Regions 3 and 4 are used). By checking a large enough subset of
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A3 -A 4 combinations, we hopefully will be able to get a better idea of the range of possible a 3 -aV4

combinations that can be modeled using the GLD.

5.5 Results

We originally started by re-examining the range 0 < A3 , A4 < 1. Since an infinite number of

different A3-A4 combinations are possible over this range, we obviously can only look at a small

fraction of the total number of values. Figure 6 shows the combinations of k3 and a 4 that result

when A3 and A4 are each iterated over this range in steps of 0.01 each. 2 We can note several

interesting details from Figure 6. First of all, the a3-0 4 combinations are symmetric around the

a 3 = 0 axis. This is expected, since Equations 8 and 9 show that when the values of A3 and A4

are interchanged, the resulting distribution has the same a 4 value, but has a a3 value that is the

negative of the original. Therefore, we should expect this type of symmetric behavior.

Figure 6 also shows that there is an apparent lower limit on the possible ae4 values, but that

the minimum possible a 4 value for any particular case depends on the associated value of a 3. For

example, we can see that a minimum a4 value of approximately 1.8 is observed, but only when

a 3 = 0. When a3 = 1, the minimum observed value of a4 is only 3.5.

Figure 7 shows the a 3-a 4 combinations that result when we set A3 = 0 and iterate A4 over

the range in 0.01 intervals. Comparing Figures 6 and 7 shows that the minimum a 4 value for a

given value of as (a3 > 0) does indeed occur when A3 = 0. F gure 8 shows the results when we set

A4 = 0 and vary the value of A3 over the same range. Obviou ly, when a3 _< 0, the minimum value

of a 4 (for a given value of a3) occurs when A4 = 0, as we woul 'expect. The two figures also show

that when a3 = 0, setting either A3 or A4 to zero results in the same minimum value of a4.

So, over our limited range of values, it seems that our h pothesis is valid. However, what

happens when we iterate over the same range in intervals smaller than 0.01? Does our hypothesis

2
We disregard the combination A3 = A4 = 0 for this case, as well as all future cases, since it yields a GLD with

Pm invalid pdf.
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Figure 6. a3-N4 Combinations for 0 _< A,4. <_ 1

still hold? To answer this question, we studied cases where the step size was set as low as

0.0001. These additional points, when added to Figure 6, merely "filled in" the range above our

previous limits. Setting A3 (or A4 , depending on the range of interest) equal to zero still gave the

smallest C4 value for a given value of a3.

Our next step was to attempt to expand our hypothesis to regions beyond the range 0 <

A3 , A4 _. 1. Although we could not inspect every possible A3-X4 combination, we tried to examine

typical cases over the entire range of possible values.
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Figure 7. a3-N 4 Combinations for A3 = 0, 0< A4 < I

To do this, we first needed to determine maximum values for A3 and A4 . The lower bound

on A3 and A4 had already been given by Equation 5, rnin(A,3,A 4 ) > -1. However, there were

no restrictions on the largest possible values these parameters could have. Through trial and

error, a working upper bound of A3 , A,4 _ 40 was proposed. Although specific combinations of A3

and A4 exist where one of the parameters has a value greater than 40, we wished to study those

combinations where we can vary both variables over their entire ranges without encountering any

undefined C13 -04 combinations. We do not expect that we are dismissing a large number of A3 -- •4

combinations by using this assumption, and it gives us an upper bound with which to work.

Figure 9 sLows the resulting a 3 -aN combinations when A3 and A,4 were varied over the range

0 < A3 , A4 < 40 using a step size of 1.0. Due to limitations in the capacity of our plotting program,

this larger step size was needed to plot this entire range. We expect that as we saw before, as
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the step size is decreased (thereby increasing the total number of A3 -A4 combinations plotted),

the new points will be located in positions that will cause the open area above the parabolic curve

to be "filled in."

Figures 10 and 11 show the resulting a3-CV4 combinations when we set one of the parameters

equal to zero and varied the other over the range from zero to 40, usinig a step size of 0.01. Figure

10 Set A3 = 0 and varied A4 over this range, while Figure 11 Set X\4 = 0 and varied A3.

By comparing Figures 10 and 11 to the complete set of points in Figure 9, we can see that

these two subsets of values do indeed encompass the minimum C14 values for all of the a3 values.

Figure 12 shows the results of Figures 10 and 11 together on the same set of axes.

By examining these two subsets of values in Figure 12 together, it is obvious that over a3'S

negative range, setting A3 =0 produces the corresponding minimum a 4 value, while over a3'S
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positive range, setting A4 = 0 produces the minimum a4 value-the "opposite" of our results from

the earlier case, where A3 and A4 were restricted to values between zero and one.

Figure 13 shows the area where the two sets of points cross in more detail. Since Figure 12

includes a subset of the range of values shown in Figures 7 and 8, we can see where these earlier

points lie in our extended range. Obviously, the points in Figure 7 correspond to the A3 = 0 points

found above the A4 = 0 curve in Figure 12 (in the range where a3 _> 0). Similarly, the points found

in Figure 8 correspond to the A4 = 0 points found above the A3 = 0 points in Figure 12 (a3 _ 0).

An examination of the A3-A4 combinations used to generate Figure 13 shows that these"upper"

points correspond to the cases where the non-zero parameter had a value less than 1.0. The two

points shown at a3 = 0 in Figure 12 correspond to the pairs A3 = 0, A4 = 1 and A3 = lA 4 = 0. As

the non-zero parameter is increased above 1.0, the "lower" part of the respective curve is formed.

As it is decreased below 1.0, the "upper" part of the curve is generated.

It therefore appears that the' sets of values given in Figures 7 and 8 are not the minimum

a4 values that are possible using the GLD. By setting either A3 or A4 equal to zero (depending on

whether a negative or positive value of a3, respectively, is desired) and allowing the other to take

on values above one, we can attain smaller values of a4 for the same values of a3.

To this point in our analysis, we have only examined A3 -A 4 combinations in Region 3. How-

ever, there are also valid A3-A4 combinations in Region 4. What values of 03 and 04 do these

combinations yield?

Figure 14 shows the a3-a4 combinations that result when A3 and A4 are varied over the range

-. 25 < A3, A4 < 0 using a step size of 0.01. We can see that althoug'i the range of a3 is similar

to the previous cases, the resulting values of Q4 are much larger. Figure 15 shows only the lower

portion of this range, using a smaller step size (thereby showing more points). Obviously, none of

these A3-A4 combinations yield a a4 value lower than those we have already found, but instead "fill

in" the upper range of 3-0`4 combinations not covered by the A3-A4 combinations of Region 4.
/

47 "/i

//



~.t"

*

6.5 "

"lambda 3 = 0" 0
"lambda 4 = 0" +

6'
~ +

+
.5.5 4-+

+
0 +

0 +.. ,
+

45 0.s +

++ +

G4 4 +"

+ +
0 +

3.5 +
+

+

+ , +
+

3.5 +
3 0 +0+ +

+ +-

2 + +
1.5 +

- -1.5 -1 -0.5 0 0.5 1 1.5

a3

Figure 13. Expansion of Crossing Region

48

i - - ." - '. -. . .. .



/

500 .

450

400

350
3000

C14 250 J 0 0

000

00

00

-8 -6 -4 -2 0

aX3

Figure 14. a3-a 4 Combinations for -. 25 < A3, A4 < 0

49

_____-____-___.___________________ __ / N,



A\

20

a4 10 •

5J

0 I I I I • I

-8 -6 -4 -2 0 2 4 .6

Figure 15. Expansion of Lower Range

50

50



5.6 Conclusions

Our original hypothesis was that for a given value of af3, the minimum possible value of a 4

that the GLD can produce occurs when A3 = 0. When we examined the range 0 < A3, A4 •1

it appeared that this hypothesis was at least partly true. However, when we examined A3-A4

combinations outside of this range, we noticed that a lower value Of N4 could be found for the same

a3.

We must therefore revise our original hypothesis. A more reasonable one seems to be that for

a given non-negative value Of a3, the minimum a4̀ value that the GLD can produce occurs when

A4 = 0 and A3 ! 1. If a3 is negative, the minimum N4 value occurs when A3 = 0 and A4 _> 1.

If we look at the sample table given in Figure 5, we can most likely "improve" on its smallest

a4 value. We expect that as we decrease the value Of a4 below the smallest tabulated value, the

corresponding A3 values should decrease to zero, and then rise again to values above 1.0 at its

true minimum. The corresponding values Of A4 should decreases to zero, and become zero for the

minimum possible N4. This will definitely increase the GLD's present range.

Although we have only looked at only a small subset of the A3-A 4 combinations, we can be

confident of our results. It was mentioned previously that we needed to use a fairly large step size

in some of our analysis. When this step size was decreased, we did not witness any unexpected

behavior. Instead, these additional point simply fill in the Of3-a 4 space above our minimum o:4

curve. If we were to use an infinitesimally small increment between A3 and A4 values, we expect to

see a solid region above the minimum N4 line, as shown by Figure 16.

As a final result, Figure 17 shows both the original coverage region of the GILD (from Figure

1) and our newly-covered 063-N4 combinations (denoted by the darker shaded region). Although

we can not reach the boundary of the Impossible Area, we can indeed cover a larger portion.
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VI. Examination of Uncovered a3-a 4 Range

The results of Chvpter V showed that we can extend the present range of a 3-a4 combinations

that the GLD can model. However, as Figure 17 shows, we are still not able to to cover the entire

spectrum of possible a 3 -CY4 combinations. What do these "uncovered" distributions look like? Is it

even worthwhile to try to include them? This chapter will try to answer these questions by looking

at a few specific cases that lie outside of the GLD's range.

From Figure 17, we can see that the CV3-a04 combinations not covered by the GLD can be

modeled by U- or 3-shaped beta distributions. Bury [1] gives the following equations for the

skewness and kurtosis (what he calls the first, and second shape factors) of the two-parameter beta

distribution

2(b-a) fa+b+1 (
S a-= b+2v - (16)

(17)

3(a+b+1)[2(a-b) 2 +ab(a+b+ 2)] (18)

at4  = a'b(a -4-b + 2)(a + b- +3) (

where a and b represent the two beta distribution parameters. Since we know what values of

skewness and kurtosis we desire, we neea simply solve these two equations to find the appropriate

values for a and b. We can then plot the resulting distribution functions using the equation for the

beta pdf,

r(a+b) I 6)-I
f(-) -)(b)r (1 -x' bx 0 < x< . (19)

We will look at the four a.3-0 4 combinations shown (along with their respective beta param-

eters, a and b) in Table 6. By looking at Figure 171 we can see that these cases correspond to

two U-shaped and two J-shaped beta distributions that can not be duplicated using the GLD.

Although we are only looking at a small number of cases, we should at least get a feel for the
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Case a3 04 a b
1 7- 2 0.28 0.578
2 5 0.19 1.01
3 2 6.25 0.179 1.185
4 -- 3 4.3 0.048 0.233

Table 6. Four Uncovered ca3 -a 4 Combinations

type of shapes we can expect from other pdfs that fall into these regions. Figures 18 through 21

show the four resulting pdfs. Note that these four pdfs seem to be "extreme" examples of beta

distributions-interesting, but perhaps not very useful.

2.5 I I 1 I ,

2

1.5

f(x)

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 18. Distribution Function for Case 1

To see this point, recall that one of our reasons for wanting to expand the GLD's range was

to make it more useful as a simulation tool. By expanding its range, we can model a wider range

of C3-N4 combinations, and hence a wider range of potential empirical data sets. However, we

must also look at the situation realistically. In ordinary simulations, we do not expect to see many

empirical data sets that resemble the pdfs shown in Figures 18 through 21.
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Figure 20. Distribution Function for Case 3
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Figure 21. Distribution Function for Case 4

Is it worthwhile to attempt to expand the GLD to cover the remainder of these a 3 -0 4 com-

binations? The answer tc that question seems like it would depend on whom you asked. While

mathematicians might be dismayed that we can not cover all the possible situations, simulation

users might be satisfied that they can model such a wide range of different distributions using a

single pdf. We tend to fall into the latter group. It is slightly disappointing that we have not been

able to expand the GLD to the boundary of the Impossible Region of Figure 17, but we are happy

with what we have done. The range of distributions we cannot model using the GLD seems to be

"extreme" cases that will not be of much practical use. Therefore, our efforts can be considered,

at least, a partial success.
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VII. L-Mornents for the GLD

7.1 Introduction

In determining the appropriate values for the four GLD parameters, the method of moments is

commonly used. There are several reasons for this. First, the concept of the moments is something

that can be understood by the majority of users. Second, the first four moments (mean, variance,

skewness, and kurtosis, respectively) of a pdf or empirical data set can usually be calculated fairly

easily. Third, since Ramberg and Schmeiser [12] developed equations for the first four moments as

functions of the four GLD parameters, we can "match" most any distribution or data set using the

GLD by simply determining appropriate values for the four A parameters.

Unfortunately, there are some problems with this approach. As we have already mentioned,

the GLD cannot "mimic" all possible combinations of skewness and kurtosis. Although it can

represent most of the commonly-used pdfs, there are some it .annot. Secondly, in empirical data

sets, there can be a large variability in the higher-order moments, i.e. the skewness and kurtosis.

Since these moments are based on the third and fourth powers of the difference between each

sample point and the mean, one abnormal data point can create a large change in these measures,

especially when the sample data set is relatively small. It may well be the case that this outlying
/

value is important to the overall nature of the underlying distribution, but often such occurrences

are simply bad luck in sampling.

Since the GLD relies on the given values of skewness and kurtosis so heavily, the resulting

distribution can be significantly altered if incorrect values are used. It therefore may be worthwhile

to investigate other methods for obtaining the values of the GLD parameters. Hosking [3] has .

presented an alternative to the use of moments, that of L-moments. These L-moments are based

on order statistics and are supposedly not as susceptible to abnormal data points as are the measures

of skewness and kurtosis.
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7.2 Derivation

Hosking defines the first four L-moments via:

Al = j R(p)dp (20)

A2  = - R(p) . (2p - 1)dp (21)

A3 = jR(p).(6p2 - 6p + 1)dp (22)

A4 = R(p). (20p3 - 301)' + 12p + 1)dp (23)

where R(p) is simply t.e percentile function.

As with the commonly-used measures of skewness and kurtosis, Hosking [3] chooses to define

the two higher order moments as dimensionless ratios relative to the second order moment:

_AA_

T3 A2

T4 A2 "

We opt to follow that convention.

The four L-moments have similar roles to the typical moments. Since the first L-moment

is simply the expected value of the distribution, it is identical to the mean of the dist'ibution.

Also, a symmetric distribution will have r3 = 0, just as a3 = 0 for symmetric distributions using

conventional moments. According to Hosking, however, r3 and r4 are more stable measures than

a3 and a4, and therefore better estimates for empirical data.

For the GLD, the L-moment equations become:

A, + A(A•- (24)
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A2 A A 4+1( A4+2)+A4(A+ I )(A1+2) (25)

/
-()~~-) ~ A2() 3+1 )(A4 +)A+")-(-A 4 )A+ 1 )(A 4 +2) A,3

13 (A 3+3)(A 4 +3)[A 3(A 4 +1)(A 4 +2)+A4(A 3 +I )(A +21(2]

( = ]-3 II2 ' (• FI( 4 2(A4+ )A I4+ A• 3• "' )('A•'-,+I)( A-.+2)f . 3 +a)(A 1 +'4 ( 7) " -.-..i

r4 - (A4+3)(,A 3 +2)(A 4 +3)(A 4 +')(A 3 (A 4 +I)(A 4 +2)+A 4(A 3+i)(A 3+2)] (27)

A complete derivation of these equations can be found in appendix A.

7.3 Usefulness of L-Momrnts

Although Equations 24 through 27 look complicated, note that they are all polynomials.-

Unlike the GLD equations (Equations 6 through 9) based on typical moments, these have no beta

functions. Since computerized solution algorithms for systems of polynomial equations are fairly

common and easily adaptable, it may be easier to determine the values of the GLI) parameters

using L-moments instead. We have already noted that according to llosking [3], r-3 and r4 are more

"stable" measures than the currently used moments, 03 and a4. Perhaps the method of moments

could be implemented with L-moments rather than the more-familiar typica! (standard) moments

7.4 (The Problem of) Computfng L-moments . -_ ,__/

There are some problems with L-moments as well. The "sample" L-nmomnents are based on

order statistics:

Al =E(X)

A2 = ½E(X2 :2 - X:2)

Aj = !E(X 3 :3 - 2X 2 3 + X 1•3 )
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A4 = iE(X 4 4 - 3X 3 4 + 3X 2:4 -X ),

where Xab denotes the a&h order statistic in a group of size b. A review of the available litera-

ture does not show how to adapt these mcasures to samples of a larger size. Therefore, we have

hypothesized two ways of doing this.

First, we could define each measure as the average of the results of every possible subset of

the proper size within the data set. For example, in calculating the value A2 for a sample of size

n = 10, we would calculate the value of A, for all 2) = 45 possible comhbinations and average

the results. This is obviously an unacceptable option since the amount of work required quickly

becomes jrohibitive, even for relatively small data sets.

A second possible method would be to derive the empirical cumulative distribution function

of the data set, and create finite summations to approximate Equations 21 through 23. This seems

to be the more reasonable approach, since the amount of work required is much less than that

involved in calculating each possible combination. If an effective means of calculating sample L-

moments: can be found, we can use Equations 24 through 27 in place of the more complicated GLD

moment 6quations to estimate appropriate values for the Ai. Relative computational ease may

simplify further research into the GLD.

Unfortunately, the quality of these estimators remains to be seen. At this point, we have

no way of knowing if either method will produce "good" estimates (unbiased, minimum variance,

etc.). To test the consistency of these approaches, it might be reasonable to conduct test. cases with

known pdfs to compute:

1. The theoretical L-moments-Hosking [4] presents these for many of the commonly-used pdfs.

2. An exhaustive enumeration-take samples of various sizes from the pdfs and compute.
7

3. The empirical cdf of those same samples.

and compare the results.
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VIII. Conclusions/Suggestions for Future Research

This thesis was undertaken to study the Generalized Lambda Distribution in depth, focusing

particularly on the reasons behind the limitation on the range of skewness-kurtosis combinations

it can Assume. Our goal was to expand this range so that the GLD would be capable of modeling

any possible probability density function or empirical data set. Although we were able to expand

the GLD's range beyond its previous limits, we fell short of our goal of total coverage.. 7

What is the problem? It could be a number of things. Other general-purpose methods for

fitting distributions to data (such as the Johnson and Pearson systems) must utilize more than

one functional form for the distribution's pdf to cover the entire range of values shown in Figure

1. Perhaps this is the case for the GLD as well. We also could be faced with a theoretical limit on /
possible combinations of a 3 and &4 that can be modeled using the GLD in its present form. S

Further, since we use the method of moments to determine the appropriate values of the

four GLD parameters, we limit their range to regions where the first four moments are defined. /
This thesis has given a description of an alternative to the method of moments (L-moments), and

other methods for determining the parameter values have been documented. Perhaps one of these

approaches may yield new GLD forms that the method of moments cannot.

The limit may be the result of analytical considerations, as well. Due to the complexity of

the GLD, we can not solve for the parameter values in an easy fashion; instead we must rely on

computerized searches to determine appropriate lambda values. The equations for a 3 and a4, (8)

and (9), both require evaluation of beta functions. The beta functions in turn require evaluation

of gamma functions. Since finding exact values for the gamma function is not computationally

tractable, we are instead forced to use approximation techniques. These approximations might be

a source of error, but we do not believe so. However, if it is, hopefully the L-moment method,

which uses only polynomials to determine the parameter values, will yield better results.
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Over the course of our research, we have learned a great deal more about the GLD. We have

been able, at least experimentally, to establish a lower limit on the values of kurtosis that the GLD

can attain, given a specific skewness. We also have a more thorough understanding of how Powell's

Algorithm works and how it functions when faced with our penalty function. We saw that neither

the penalty function, nor the constrained region of viable A3-A4 values, had an effect on the the

algorithm's searching process.

WVhere do we go from here? As a first step, the concept of L-moments is worth a longer

look. At present, the literature on L-moments is limited. In particular, we do not know how to

effectively determine the L-moments of an empirical data set. WVe discussed two of our own ideas

for doing this in Chapter VII. Using L-moments, we can find the values of the four GLD parameters

simply by solving a system of polynomials rather than using a non-linear function minimization

required to match the standard moments. Hlopefully their use can expand the GLD's range even

further. L-moments are not widely known, however, and we need more information about them to

determine their usefulness.

In summary, though, we must remember that even with its present restrictions, the GLD is

still an extremely powerful tool for simulation studies. It allows the user to model a wide range

of pdfs and empirical data sets, simply using the GLD (with appropriate parameter values) and a

pseudo-random uniform random variable generator. When modeling an empirical data set, instead

of facing a tough decision between two (or several) competing pdfs, we can usually match the first

four moments of the data set exactly using the GLD--a much easier choice.
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Appendix A. L-Mowcnt Paiameter Derivations

In this Appendix, we will present an in-depth derivation of the four L-moments, A1, A2, r3;

and r 4 for the Generalized Lambda Distribution.

Hlosking [3] presents the following formulas for generating the four L-moments from any

distribution:

A, = jR(p)dp (28)

A2 = R(p). (2p - 1)dP (29)

A3 = R(p). (6P2 - 6p+ 1)dp (30)

A4 = R(p).(20P3 30p2 + 12P 1)dp (31)
1,\

where R(p) is the distribution's corresponding percentile function.

For A1 , we have:

A, 0 o [A, fi (y\ ,p)A-Id d]
A2l- 1\31 4+1 ) p=l

which is equivalent to:

Al A + A A3(32)
A2 (A3 + 1)(A 4 + 1)

For A2 :

A2  4 fc [,\i + WpA -(1 - P),\)] (2p - 1)dp

~fo [2AIp -A + -L2(2p,\3+1 - p -2p(l .p)1\4 + (I p)-14)] dp

64



A - -.p + P -
3  (P)4+ p-i

"- A+ 2 A 3+2 _ A_ +I pfo p( , .

We now make use of the fact:

j xn(1 -x)md= 3(n + 1,m+ 1) (33)

to get:

1A[ A , -203(2, A4 +1)A12  1 A+2 A3-+I1 +,4+ 1

But,

#(2, a) =(a, 2))=(f- =-- (34)
r(a +2) a(a +1)'

so

A 2 = T +2 [+1a A 4 +A+1 (A4 +1)(A,+2)

This is equivalent to:

A = 2(;k3+1)(\4+1 ,)-(A3+2) +i)(14+2)+(A5+* )(A3+2)(A4+2)-2(A,3+1)(A3+2) (35)
A2 ý2(A+I)(A3+2)(A4+1)(A4+2)

A2 = (,+ i)(x+ 2 )(AX+i)(.A+2)

For A3 :

A3 = [ [+ (pA3 (1 p)14)](Op2-6p+1)dp

[ 6 [6p2 - 6Ap +A + - Op 3+2-6 3+ +pA3-6p2(1- p)A4 + 6p(a -p-p14 (1-)4) dp

[6Ajp 3. 6A Ip2 + A, P=3 2 + I ,=0
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+ 1'- 6pX3+3 - p 3+2 p-s (I-• + ) 4+1" = -6/(3,A4]+ 1)+ 6.3(2,A'+ 1)

A2 A + A3+ 2+3+I + A4 + I/JpO

Using Equation 34 and the fact. that:

r(3)r(a) 2
3(3, a) =(a, 3) _r(a + 3) a(a + 1)(a + 2)' (37)

this equation is equivalent to:

A 3  2A•1 - 3A1 + A1

6,1-l (•+ (A4 +2)(A 4 +3) + (•÷(+)- -]

1 1 6 6 1 _ 6 6 (3

A3  I [_ 6 6 + I A4 +1) 4 6 - (38)
T2A33 A+ + 1 (T\,+2)(\4+3) + ( 4 +1)(1 4+2) 4

Combining the first three terms of Equation !38 yields:

6A3 + 18A3 + 12 - 6 3 - 240 3 - 18 + A 53 + 6 _ A - A3
+ 03 + 1)(A3 + 2)(A3 + 3) i (A3 + 1)(A 3 + 2)(A3 + 3) (

Combining the last three terms of Equation 38 yields:

-12 + 6(A 4 + 3) - (A4 + 2)(A4 + 3) -,A2 + A4

(A4 + 1)(A 4 + 2)(A4 + 3) (A4 + 1)(A 4 + 2)(A4 + 3) (40)

We then combine the results of Equations 39 and 40 to get:

AX = • [(A+1)(3+2)(+3) (A4+1)(A.+2)(•,+3).

= (A2-,(A34+1)(X.+2)(-\3+3)-(A•-.A4)(A3+1)(A3+2)(,3+3) (41)
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We use Equations 36 and 41 to derive the equation for -3:

A3

A2

= (A -A)()+1)(4 +2(A 4 +3)-~- )( 3+i)(A 3 +2)(,\ 3 +3)73 = , A2(A3+ 1)(.\3A+2)(A 3 +3)(A 4 + 1 )(A 4 +2)(,\4 +3)

A3(A 4 + I)(A 4 +2)+A 4 (A 3+ 1 )(A 3 +2)

(A2=-A, 3 )(A 4 +1)(A +2)(A 4•,+3)-(A,-A + (3 + ,+2)(A,+3 (42)
3 (A 3+3)(A. 4 +3)[A 3 (A 4+ I)(A 4 +2)+A 4 A+1)(A+2)] (4

For A4 :

A4= f0 [A, + I(pA3 -(1- p))'4)] kCOP
3 

- 30p,2 + 12p - 1)dp1

LfI 20Atp 3 - 30Alp 2 + 12Aip - A,

I + 3 0 pA3 +2 + 12pA3+1 _

-20p 3 (1 - p)A4 + 30p 2 (1 - p)14 - 12p(1 - p)' 4) + (1 - p)A4)dp

+[2o• , _ A + 12LZ _ _-=
3+4 A0 3 Aa+

2  
A 3 +l A4+l 2 p=O

A2 A+ A3+3 A3+2 -A 3 +1 A ,4+l 1 P=O

+- [-208(4, A4 + 1) + 303(3, A4 + 1) - 12,6(2, A4 + 1)]

We use Equations 34, 37 and the fact that:

r(4)r(a) _ 6
8'4,u) Ok u,' 4) -r(a + 4) a(a + 1)(a + 2)(a + 3)'

to find an equivalent expression.
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A4  5 -O A1 + [.i 2 - 30, 12 1,

120 60 12 + I
+(A 4+l)(A4+2)(A 4 73-) ( 4+1)(A 4 +2) A+1

"1 0 30 + 12 1

A4 = [2 A34 A3+3 A]+2 \,I+I

+ -(A 4 +I)(A +2)(A 4 +3)(T 4+4) + (A4 +1)(A 4 +2)(A4 +3) (A4+1)(A 4 +-) +(

Combining the first four terms of Equation 43 yields:.

o. [20(A 3 + 1)(A3 + 2)(A 3 + 3) - 3o(A3 + 1)(A.3 + 2)(A3 + 4)1

+ [12(A3 + 1)(A3 + 3)(A3 + 4) - (As +2)(A 3 + 3)(A3 + 4)]

where D represents the common denominator:

D = (A3 + 1)(A3 + 2)(A3 + 3)(A3 + 4).

This is equivalent to:
3 - 3AI + 2A3

(A3 + 1)(A3 + 2)(A 3 + 3)(A 3 + 4)(

Combining the last four terms of Equation 43 yields:

-o120+6•o(4+4)-,4+31A,+4)+(A4+2)(-\+3)(1\+4)
( 4+(•+2)(\.+3)(A4+4)

$-+• (45)

- ~(A 4 +1)(A 4+2)(A 4+3)(A 4 +4) 45
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Taking Equations 414 and 45 together yields:

A4  A2 ýA+)A3 (3+A+4 (A 4 +1)(A 4 +2)(A\4+3T(-AT+4)]

A4 = (A\3-3A2+2A\ 3)(\ 4 +1)\+2(\+)A+)(-34+,)(+1A,2)\,3( 3+) (46)

A 2(A3+1)(A 3+2)(A 3 +3)(A 3+4)(A 4 +1)(A 4 +2)(A 4+3)(A 4+4)

Using Equations 36 and 46, we find:

7- A2

__(A-3A23+2,\,)(,\,+LI)(.. +72)LA4\+3)1,1 4 +4)+(AS-3A2+2A4)A+ ( 3 2( 3 3( 3 4

A4,(A+ 1 )(A3+2+(A(A 3+1)() 3+2

= P~-)i~+A 3 )(A3 +1 )(A+2)(;+ 3)(A4 +4)+()443A)+2A 4+)A4 3+)(A4+)A+)A+4)

r4 (Ai+3)(A 3 +4)T(i.+-3)Q+4)[A 3 (A 4+1X(A 4 +2))( 3 4( 3 +2)](7
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